Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
1.
Diabetes Metab Syndr Obes ; 17: 1795-1808, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655491

RESUMO

Purpose: To investigate the therapeutic effect and underlying mechanism of a traditional Chinese medicine (TCM) mixture consisting of Astragalus, rhubarb, and saffron in a mouse model of diabetic kidney disease (DKD). Methods: Forty-eight db/db mice received no TCM (DKD model), low-dose TCM, medium-dose TCM, or high-dose TCM, and an additional 12 db/m mice received no TCM (normal control). Intragastric TCM or saline (controls) was administered daily for 24 weeks. Blood glucose, body weight, serum creatinine (SCr), blood urea nitrogen (BUN), blood lipids, and urinary microalbumin were measured every four weeks, and the urinary albumin excretion rate (UAER) was calculated. After 24 weeks, kidney tissues were collected for transcriptome sequencing, and the main functions of these genes were determined via functional enrichment analysis. Results: Compared with the DKD model group, the medium-dose and high-dose TCM groups had significantly decreased levels of SCr, BUN, total cholesterol, triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and UAER (all p<0.05). We identified 42 genes that potentially functioned in this therapeutic response, and the greatest effect on gene expression was in the high-dose TCM group. We also performed functional enrichment analysis to explore the potential mechanisms of action of these different genes. Conclusion: A high-dose of the Astragalus-rhubarb-saffron TCM provided the best prevention of DKD. Analysis of the kidney transcriptome suggested that this TCM mixture may prevent DKD by altering immune responses and oxygen delivery by hemoglobin.

2.
Eur J Neurosci ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576159

RESUMO

Metabolic disorders are risk factors for stroke exacerbating subsequent complications. Rapidly after brain injury, a glial scar forms, preventing excessive inflammation and limiting axonal regeneration. Despite the growing interest in wound healing following brain injury, the formation of a glial scar in the context of metabolic disorders is poorly documented. In this study, we used db/db mice to investigate the impact of metabolic perturbations on brain repair mechanisms, with a focus on glial scarring. First, we confirmed the development of obesity, poor glucose regulation, hyperglycaemia and liver steatosis in these mice. Then, we observed that 3 days after a 30-min middle cerebral artery occlusion (MCAO), db/db mice had larger infarct area compared with their control counterparts. We next investigated reactive gliosis and glial scar formation in db/+ and db/db mice. We demonstrated that astrogliosis and microgliosis were exacerbated 3 days after stroke in db/db mice. Furthermore, we also showed that the synthesis of extracellular matrix (ECM) proteins (i.e., chondroitin sulphate proteoglycan, collagen IV and tenascin C) was increased in db/db mice. Consequently, we demonstrated for the first time that metabolic disorders impair reactive gliosis post-stroke and increase ECM deposition. Given that the damage size is known to influence glial scar, this study now raises the question of the direct impact of hyperglycaemia/obesity on reactive gliosis and glia scar. It paves the way to promote the development of new therapies targeting glial scar formation to improve functional recovery after stroke in the context of metabolic disorders.

3.
Diabetes Metab Syndr Obes ; 17: 1687-1698, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629025

RESUMO

Purpose: This study aimed to investigate the intervention mechanism of Jiawei Shengjiangsan (JWSJS) on kidney injury in diabetic nephropathy mice. Methods: Thirty 8-week-old db/db mice were randomly divided into five groups: model group, Perindopril group, and JWSJS low-, medium-, and high-dose groups (n=6 per group) based on body weight. Additionally, a blank control group was established consisting of 6 db/m mice aged 8 weeks. The blank and model groups received daily intragastric administration of 7g/kg/d pure water. The remaining groups were assigned to JWSJS low (3.5g/kg/d), medium (7g/kg/d), high (14g/kg/d) dosage groups, and perindopril positive control group (0.48mg/kg/d) for 12 weeks. Post-experiment, serum creatinine (SCr) and blood urea nitrogen (BUN) were analyzed using an automatic biochemical analyzer. Enzyme-linked immunosorbent assay (ELISA) measured 24-hour urinary albumin, neutrophil gelatinase-associated lipocalin (NGAL), TNF-α, IL-1ß, VCAM-1, MCP-1, and HbA1c. Western blot assessed the protein expressions of p-PI3K, p-Akt, and p-NF-κB p65, while pathological kidney changes were observed. Results: Compared to the blank group, the model group exhibited increased SCr, BUN, 24-hour urinary albumin, serum NGAL, TNF-α, IL-1ß, VCAM-1, MCP-1, HbA1c, p-PI3K, and p-Akt, alongside increased p-NF-κB p65 expression, indicating significant kidney pathology. After treatment, the JWSJS group showed decreased SCr, BUN, 24-hour urinary microalbumin, NGAL, HbA1c, TNF-α, IL-1ß, VCAM-1, MCP-1 levels, increased p-PI3K and p-Akt expression (P<0.05), and reduced p-NF-κB p65 content (P<0.05). Histopathological analysis revealed that JWSJS ameliorated renal tubular epithelial cell damage, glomerular capillary and basement membrane injuries, and facilitated the repair of damaged podocytes in diabetic nephropathy mice. Conclusion: JWSJS demonstrated efficacy in reducing renal inflammation in diabetic nephropathy mice, with its mechanism likely associated with the inhibition of the PI3K/Akt/NF-κB signaling pathway.

4.
J Ethnopharmacol ; 329: 118160, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38588985

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Hepatic steatosis, a hallmark of non-alcoholic fatty liver disease (NAFLD), represents a significant global health issue. Liver lipidomics has garnered increased focus recently, highlighting Traditional Chinese Medicine's (TCM) role in mitigating such conditions through lipid metabolism regulation. The Zuogui Jiangtang Qinggan Formula (ZGJTQGF), a longstanding TCM regimen for treating Type 2 Diabetes Mellitus (T2DM) with NAFLD, lacks a definitive mechanism for its lipid metabolism regulatory effects. AIM OF THE STUDY: This research aims to elucidate ZGJTQGF's mechanism on lipid metabolism in T2DM with NAFLD. MATERIALS AND METHODS: The study, utilized db/db mice to establish T2DM with NAFLD models. Evaluations included Hematoxylin-Eosin (HE) and Oil Red O stainedstaining of liver tissues, alongside biochemical lipid parameter analysis. Liver lipidomics and Western blotting further substantiated the findings, systematically uncovering the mechanism of action mechanism. RESULTS: ZGJTQGF notably reduced body weight, and Fasting Blood Glucose (FBG), enhancing glucose tolerance in db/db mice. HE, and Oil Red O staining, complemented by biochemical and liver lipidomics analyses, confirmed ZGJTQGF's efficacy in ameliorating liver steatosis and lipid metabolism anomalies. Lipidomics identified 1571 significantly altered lipid species in the model group, primarily through the upregulation of triglycerides (TG) and diglycerides (DG), and the downregulation of phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Post-ZGJTQGF treatment, 496 lipid species were modulated, with increased PC and PE levels and decreased TG and DG, showcasing significant lipid metabolism improvement in T2DM with NAFLD. Moreover, ZGJTQGF's influence on lipid synthesis-related proteins was observed, underscoring its anti-steatotic impact through liver lipidomic alterations and offering novel insights into hepatic steatosis pathogenesis. CONCLUSIONS: Liver lipidomics analysis combined with protein verification further demonstrated that ZGJTQGF could ameliorate the lipid disturbance of TG, DG, PC, PE in T2DM with NAFLD, as well as improve fatty acid and cholesterol synthesis and metabolism through De novo lipogenesis pathway.

5.
Nutrients ; 16(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38613031

RESUMO

In diabetes, pancreatic ß-cells gradually lose their ability to secrete insulin with disease progression. ß-cell dysfunction is a contributing factor to diabetes severity. Recently, islet cell heterogeneity, exemplified by ß-cell dedifferentiation and identified in diabetic animals, has attracted attention as an underlying molecular mechanism of ß-cell dysfunction. Previously, we reported ß-cell dedifferentiation suppression by calorie restriction, not by reducing hyperglycemia using hypoglycemic agents (including sodium-glucose cotransporter inhibitors), in an obese diabetic mice model (db/db). Here, to explore further mechanisms of the effects of food intake on ß-cell function, db/db mice were fed either a high-carbohydrate/low-fat diet (db-HC) or a low-carbohydrate/high-fat diet (db-HF) using similar calorie restriction regimens. After one month of intervention, body weight reduced, and glucose intolerance improved to a similar extent in the db-HC and db-HF groups. However, ß-cell dedifferentiation did not improve in the db-HC group, and ß-cell mass compensatory increase occurred in this group. More prominent fat accumulation occurred in the db-HC group livers. The expression levels of genes related to lipid metabolism, mainly regulated by peroxisome proliferator-activated receptor α and γ, differed significantly between groups. In conclusion, the fat/carbohydrate ratio in food during calorie restriction in obese mice affected both liver lipid metabolism and ß-cell dedifferentiation.


Assuntos
Restrição Calórica , Diabetes Mellitus Experimental , Animais , Camundongos , Camundongos Obesos , Dieta Hiperlipídica/efeitos adversos , Desdiferenciação Celular , Dieta com Restrição de Carboidratos , Fígado , Carboidratos , Obesidade
6.
Exp Ther Med ; 27(4): 148, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38476888

RESUMO

Diabetes mellitus (DM) is a disease that affects millions of individuals worldwide and is characterized by abnormal glucose metabolism that can induce severe damage to numerous organs throughout the body. Sex differences have been demonstrated in a number of factors associated with diabetes and its complications, such as diabetic kidney disease and diabetic liver disease. To investigate the sex differences in DM further, the changes in the weight, food and water intake, and blood sugar of mice were recorded for 8 weeks in the present study. Hematoxylin and eosin staining, Masson's trichrome staining and transmission electron microscopy were used to observe the pathological changes of liver and kidney tissues. There is no significant difference in the water intake and blood glucose concentration between db/db female and male mice was observed. However, sex differences in liver and kidney damage including glomerular injury and hepatic fibrosis were found. In conclusion, the present study characterized the features of liver and kidney damage in db/db mice and indicated that sex differences should be taken into account in experiments using female and male experimental animals. Furthermore, sex differences should be taken into account in the selection of drug interventions in experiments and in clinical drug therapy.

7.
Endocr Connect ; 13(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38466634

RESUMO

Chronic inflammation induced by obesity plays a crucial role in the pathogenesis of insulin resistance. The infiltration of macrophages into adipose tissues contributes to adipose tissue inflammation and insulin resistance. Kaempferol, a flavonoid present in various vegetables and fruits, has been shown to possess remarkable anti-inflammatory properties. In this study, we used leptin receptor-deficient obese mice (db/db) as an insulin-resistant model and investigated the effects of kaempferol treatment on obesity-induced insulin resistance. Our findings revealed that the administration of kaempferol (50 mg/kg/day, for 6 weeks) significantly reduced body weight, fat mass, and adipocyte size. Moreover, it effectively ameliorated abnormal glucose tolerance and insulin resistance in db/db mice. In the adipose tissue of obese mice treated with kaempferol, we observed a reduction in macrophage infiltration and a downregulation of mRNA expression of M1 marker genes TNF-α and IL-1ß, accompanied by an upregulation of Arg1 and IL-10 mRNA expression. Additionally, kaempferol treatment significantly inhibited the STING/NLRP3 signaling pathway in adipose tissue. In vitro experiments, we further discovered that kaempferol treatment suppressed LPS-induced inflammation through the activation of NLRP3/caspase 1 signaling in RAW 264.7 macrophages. Our results suggest that kaempferol may effectively alleviate inflammation and insulin resistance in the adipose tissue of db/db mice by modulating the STING/NLRP3 signaling pathway.

8.
Life (Basel) ; 14(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38541736

RESUMO

Type-2 diabetes mellitus (T2DM)-induced sarcopenia is intertwined with diminished insulin sensitivity and extracellular matrix (ECM) remodeling in skeletal muscle and other organs. Physical activities such as aerobic exercise play a crucial role in regulating blood glucose levels, insulin sensitivity, metabolic pathways, oxidative stress, fibrosis, ECM remodeling, and muscle regeneration by modulating differentially expressed protein (DEP) levels. The objectives of our research were to investigate the effect of six weeks of aerobic exercise on the gastrocnemius and soleus muscle of db/db mice's DEP levels compared to those of sedentary db/db mice. A total of eight db/db mice were divided into two groups (n = 4 per group), namely sedentary mice (SED) and exercise-trained mice (ET), of which the latter were subjected to six weeks of a moderate-intensity aerobic exercise intervention for five days per week. After the exercise intervention, biochemical tests, including analyses of blood glucose and HbA1c levels, were performed. Histological analysis using H & E staining on tissue was performed to compare morphological characters. Gastrocnemius and soleus muscles were dissected and processed for proteomic analysis. Data were provided and analyzed based on the DEPs using the label-free quantification (LFQ) algorithm. Functional enrichment analysis and Ingenuity Pathway Analysis (IPA) were employed as bioinformatics tools to elucidate the molecular mechanisms involved in the DEPs and disease progression. Significantly reduced blood glucose and HbA1c levels and an increased cross-sectional area (CSA) of gastrocnemius muscle fibers were seen in the ET group after the exercise interventions due to upregulations of metabolic pathways. Using proteomics data analysis, we found a significant decrease in COL1A1, COL4A2, ENG, and LAMA4 protein levels in the ET gastrocnemius, showing a significant improvement in fibrosis recovery, ECM remodeling, and muscle regeneration via the downregulation of the TGF-ß signaling pathway. Upregulated metabolic pathways due to ET-regulated DEPs in the gastrocnemius indicated increased glucose metabolism, lipid metabolism, muscle regeneration, and insulin sensitivity, which play a crucial role in muscle regeneration and maintaining blood glucose and lipid levels. No significant changes were observed in the soleus muscle due to the type of exercise and muscle fiber composition. Our research suggests that engaging in six weeks of aerobic exercise may have a positive impact on the recovery of T2DM-induced sarcopenia, which might be a potential candidate for mitigation, prevention, and therapeutic treatment in the future.

9.
Biomed Pharmacother ; 174: 116466, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552439

RESUMO

Here, by using in vitro and ex vivo approaches, we elucidate the impairment of the hydrogen sulfide (H2S) pathway in vascular complications associated with metabolic syndrome (MetS). In the in vitro model simulating hyperlipidemic/hyperglycemic conditions, we observe significant hallmarks of endothelial dysfunction, including eNOS/NO signaling impairment, ROS overproduction, and a reduction in CSE-derived H2S. Transitioning to an ex vivo model using db/db mice, a genetic MetS model, we identify a downregulation of CBS and CSE expression in aorta, coupled with a diminished L-cysteine-induced vasorelaxation. Molecular mechanisms of eNOS/NO signaling impairment, dissected using pharmacological and molecular approaches, indicate an altered eNOS/Cav-1 ratio, along with reduced Ach- and Iso-induced vasorelaxation and increased L-NIO-induced contraction. In vivo treatment with the H2S donor Erucin ameliorates vascular dysfunction observed in db/db mice without impacting eNOS, further highlighting a specific action on smooth muscle component rather than the endothelium. Analyzing the NO signaling pathway in db/db mice aortas, reduced cGMP levels were detected, implicating a defective sGC/cGMP signaling. In vivo Erucin administration restores cGMP content. This beneficial effect involves an increased sGC activity, due to enzyme persulfidation observed in sGC overexpressed cells, coupled with PDE5 inhibition. In conclusion, our study demonstrates a pivotal role of reduced cGMP levels in impaired vasorelaxation in a murine model of MetS involving an impairment of both H2S and NO signaling. Exogenous H2S supplementation through Erucin represents a promising alternative in MetS therapy, targeting smooth muscle cells and supporting the importance of lifestyle and nutrition in managing MetS.

10.
Biomed Pharmacother ; 173: 116395, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460364

RESUMO

Dendrobium officinale (DEN) is recognized as a kind of functional food that can effectively ameliorate endocrine and metabolic disruptions. This study delved into the pharmacological mechanism of DEN on hepatic lipotoxicity associated with Type II diabetes mellitus (T2DM). In vivo study experiments on db/db mice indicated that DEN treatment notably enhanced liver function, decreased blood lipid levels, and improved insulin sensitivity. Non-targeted metabolomics analysis revealed that DEN significantly ameliorated metabolism pathways, including lipoic acid, linoleic acid, bile secretion, and the alanine/aspartate/glutamate metabolism, as well as taurine and hypotaurine metabolism. Transcriptomics analysis demonstrated DEN treatment could modulate the expression of genes such as Cpt1b, Scd1, G6pc2, Fos, Adrb2, Atp2a1, Ppp1r1b, and Cyp7a1. Furthermore, Proteomics analysis indicated that the beneficial effect of DEN on lipid metabolism was linked to pathways like AMPK and PPAR signaling. The integrative analysis of multi-omics revealed that the PPAR-RXR signaling was critical to the therapeutic effect of DEN on T2DM-induced fatty liver. Additionally, in vitro study on AML-12 cells confirmed that DEN counteract PA-induced lipid accumulation by activating the PPAR-RXR pathway. Overall, these findings suggested that DEN exhibited the potential to mitigate T2DM-induced hepatic lipo-toxicity and manage lipid imbalances in T2DM.


Assuntos
Dendrobium , Diabetes Mellitus Tipo 2 , Camundongos , Animais , Metabolismo dos Lipídeos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Multiômica , Fígado , Transdução de Sinais , Lipídeos/farmacologia , Camundongos Endogâmicos C57BL
11.
Nutr Res Pract ; 18(1): 88-97, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38352218

RESUMO

BACKGROUND/OBJECTIVES: Mitigating insulin resistance and hyperglycemia is associated with a decreased risk of diabetic complications. The effect of Daraesoon (shoot of hardy kiwi, Actinidia arguta) on hyperglycemia was investigated using a type 2 diabetes animal model. MATERIALS/METHODS: Seven-week-old db/db mice were fed either an AIN-93G diet or a diet containing 0.4% of a 70% ethanol extract of Daraesoon, whereas db/+ mice were fed the AIN-93G diet for 7 weeks. RESULTS: Consumption of Daraesoon significantly reduced serum glucose and blood glycated hemoglobin levels, along with homeostasis model assessment for insulin resistance in db/db mice. Conversely, Daraesoon elevated the serum adiponectin levels compared to the db/db control group. Furthermore, Daraesoon significantly decreased both serum and hepatic triglyceride levels, as well as serum total cholesterol levels. Additionally, consumption of Daraesoon resulted in decreased hepatic tumor necrosis factor-α and monocyte chemoattractant protein-1 expression. CONCLUSIONS: These results suggest that hypoglycemic effect of Daraesoon is mediated through the improvement of insulin resistance and the downregulation of pro-inflammatory cytokine expression in db/db mice.

12.
J Oleo Sci ; 73(2): 231-237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38311412

RESUMO

Chronic inflammation and insulin resistance lead to metabolic syndrome and there is an urgent need to establish effective treatments and prevention methods. Our previous study reported that obese model Zucker (fa/fa) rats fed with ozonated olive oil alleviated fatty liver and liver damage by suppressing inflammatory factors. However, differences among animal species related to the safety and efficacy of ozonated olive oil administration remain unclear. Therefore, this study investigated the effects of oral intake of ozonated olive oil on lipid metabolism in normal mice and mice in the obesity model. C57BL/6J and db/db mice were fed the following AIN-76 diets for four weeks: the mice were either fed a 0.5% olive oil diet (Control diet) or 0.5% ozonated olive oil diet (Oz-Olive diet) in addition to 6.5% corn oil. The results indicated that four weeks of Oz-Olive intake did not adversely affect growth parameters, hepatic lipids or serum parameters in normal C57BL/6J mice. Subsequent treatment of db/db mice with Oz-Olive for four weeks reduced the levels of hepatic triglycerides, serum alkaline phosphatase, and serum insulin. These effects of Oz-Olive administration might be due to suppression of fatty acid synthesis activity and expression of lipogenic genes, as well as suppression of inflammatory gene expression. In conclusion, this study confirmed the safety of Oz-Olive administration in normal mice and its ability to alleviate hepatic steatosis by inhibiting fatty acid synthesis and inflammation in obese mice.


Assuntos
Fígado Gorduroso , Camundongos , Ratos , Animais , Azeite de Oliva/farmacologia , Azeite de Oliva/uso terapêutico , Azeite de Oliva/metabolismo , Camundongos Endogâmicos C57BL , Ratos Zucker , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Ácidos Graxos/metabolismo , Inflamação/metabolismo , Camundongos Obesos
13.
Ecotoxicol Environ Saf ; 273: 116102, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382346

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is a prevalent chronic microvascular complication of diabetes and the leading cause of end-stage renal disease (ESRD). Understanding the progressive etiology of DN is critical for the development of effective health policies and interventions. Recent research indicated that polystyrene microplastics (PS-MPs) contaminate our diets and accumulate in various organs, including the liver, kidneys, and muscles. METHODS: In this study, ten-week-old db/db mice and db/m mice were fed. Besides, db/db mice were divided into two groups: PS-MPs group (oral administration of 0.5 µm PS-MPs) and an H2O group, and they were fed for three months. A type II diabetes model was established using db/db mice to investigate the effects of PS-MPs on body weight, blood glucose level, renal function, and renal fibrosis. RESULTS: The results demonstrated that PS-MPs significantly exacerbated various biochemical indicators of renal tissue damage, including fasting blood glucose, serum creatinine, blood urea nitrogen, and blood uric acid. Additionally, PS-MPs worsened the pathological alterations and degree of fibrosis in renal tissue. An increased oxidative stress state and elevated levels of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and monocyte chemoattractant protein-1 (MCP-1) were identified. Furthermore, PS-MPs significantly enhanced renal fibrosis by inhibiting the transition from epithelial cells to mesenchymal cells, specifically through the inhibition of the TGF-ß/Smad signaling pathway. The expression levels of NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), Caspase-1, and cleaved Caspase-1, which are inflammasome proteins, were significantly elevated in the PS-MPs group. CONCLUSION: The findings suggested that PS-MPs could aggravate kidney injury and renal fibrosis in db/db mice by promoting NLRP3/Caspase-1 and TGF-ß1/Smads signaling pathways. These findings had implications for elucidating the role of PS-MPs in DN progression, underscoring the necessity for additional research and public health interventions.

14.
Appl Microbiol Biotechnol ; 108(1): 183, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285241

RESUMO

Fibronectin (FN) and collagen are vital components of the extracellular matrix (ECM). These proteins are essential for tissue formation and cell alignment during the wound healing stage. In particular, FN interacts with collagens to activate various intracellular signaling pathways to maintain ECM stability. A novel recombinant extra domain-B fibronectin (EDB-FN)-COL3A1 fusion protein (rhFEB) was designed to mimic the ECM to promote chronic and refractory skin ulcer wound healing. rhFEB significantly enhanced cell adhesion and migration, vascular ring formation, and the production of new collagen I (COL1A1) in vitro. rhFEB decreased M1 macrophages and further modulated the wound microenvironment, which was confirmed by the treatment of db/db mice with rhFEB. Accelerated wound healing was shown during the initial stages in rhFEB-treated db/db mice, as was enhanced follicle regeneration, re-epithelialization, collagen deposition, granulation, inflammation, and angiogenesis. The wound chronicity of diabetic foot ulcers (DFUs) remains the main challenge in current and future treatment. rhFEB may be a candidate molecule for regulating M1 macrophages during DFU healing. KEY POINTS: • A recombinant protein EDB-FN-collagen III (rhFEB) was highly expressed in Escherichia coli • rhFEB protein induces COL1A1 secretion in human skin fibroblasts • rhFEB protein accelerates diabetic wound healing.


Assuntos
Fibronectinas , Pele , Humanos , Animais , Camundongos , Cicatrização , Matriz Extracelular , Escherichia coli/genética , Colágeno
15.
J Ethnopharmacol ; 324: 117745, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38228231

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jin-Gui-Shen-Qi Wan (JGSQW) is a traditional Chinese medicine formula that has been traditionally used to alleviate urinary system ailments such as frequent urination and polyuria. Clinical studies have indicated that when combined with hypoglycaemic drugs, JGSQW exhibits a synergistic effect and can improve diabetic nephropathy (DN), yet its underlying mechanism and targets remain unclear. AIM OF THE STUDY: This study aims to investigate the therapeutic efficacy of JGSQW and its underlying mechanisms using a DN db/db mouse model. MATERIALS AND METHODS: Ultrahigh-performance liquid chromatography coupled with mass spectrometry was utilized to analyse the primary active compounds, blood levels, and pharmacokinetics of JGSQW. Additionally, the therapeutic effects of JGSQW and metformin on blood glucose levels, lipid levels, renal function, and renal pathology in diabetic nephropathy mice were investigated using a db/db mouse model. Proteomic analysis was carried out to identify the primary target of JGSQW in treating DN. The mechanism of action was verified by western blotting, immunohistochemistry, and immunofluorescence. Then, molecular docking and molecular dynamics, transfection, drug affinity responsive target stability (DARTS) assay and cell thermal migration assay (CETSA) further validated the targeted binding effect. RESULTS: JGSQW combined with metformin significantly improved the blood glucose levels, blood lipids, renal function, and renal pathology of DN mice. JGSQW mainly exerted its therapeutic effect on DN by targeting major histocompatibility complex class II (MHC class II) molecules. Immunohistochemistry results showed that JGSQW inhibited the expression of collagen I, fibronectin, and alpha smooth muscle actin (α-SMA) expression. Immunofluorescence and Western blot results showed that JGSQW inhibited the expression of H2-Ab1 and H2-Aa, which are MHC class II molecules, thereby suppressing CD4+ T-cell infiltration and improving diabetic kidney fibrosis. The binding ability of paeoniflorin to H2-Aa was predicted and verified by molecular, DARTS, and CETSA assays. Treatment with 80 µM paeoniflorin effectively alleviated high glucose-induced injury in the MPC-5 injury model. H2-Aa was overexpressed at this model concentration, and Western blotting further confirmed that paeoniflorin reduced glomerular podocyte fibrosis by regulating H2-Aa. CONCLUSIONS: JGSQW combined with metformin may have a synergistic effect to alleviates renal fibrosis in diabetic nephropathy by downregulating immune complex MHC class II molecules and attenuating the antigen presentation effect of MHC class II on CD4.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Glucosídeos , Metformina , Monoterpenos , Camundongos , Animais , Nefropatias Diabéticas/patologia , Glicemia , Simulação de Acoplamento Molecular , Proteômica , Transdução de Sinais , Fibrose , Antígenos de Histocompatibilidade Classe II/farmacologia , Antígenos de Histocompatibilidade Classe II/uso terapêutico , Metformina/farmacologia , Metformina/uso terapêutico
16.
Exp Anim ; 73(1): 29-40, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37482420

RESUMO

Diabetic nephropathy (DN), included in diabetic kidney disease (DKD), is a primary driver of end-stage renal disease (ESRD) leading to dialysis treatment. To develop new therapeutic drugs to prevent ESRD and avoid dialysis treatment, insight into DKD pathophysiology and animal models suitable for drug efficacy testing are needed. In this study, transcriptome analysis of kidneys from 26-week-old and 35-week-old uninephrectomized (UNX) db/db mice was used to identify the pathways that affect the deterioration of renal function in db/db mice. Differentially expressed genes suggested that there was increased interferon (IFN)-γ signaling during the 26 to 35-week period. Modules that changed between 26 and 35 weeks of age extracted by weighted gene co-expression network analysis (WGCNA) suggested increased the tumor necrosis factor (TNF)-α and nuclear factor-kappa B (NF-κB) signaling pathway in component cells of glomeruli. The protein-protein interaction (PPI) network analysis identified Cxcl16 as a hub gene for those signaling pathways, and it was shown that the pathways in this module changed when the glomerular filtration rate decreased in patients with DN. These results suggested the possibility that signaling mediated by Cxcl16 induced by IFN-γ and TNF-α between 26 and 35 weeks of age leads to renal fibrosis, resulting in severe disease. Drugs that target such pathways can be options for developing drugs for DN. We also think that the uninephrectomized db/db mouse can be used as an animal model of severe DKD and to evaluate efficacy in patients with DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Falência Renal Crônica , Camundongos , Humanos , Animais , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/tratamento farmacológico , Rim , Transdução de Sinais/genética , Camundongos Endogâmicos , Fator de Necrose Tumoral alfa/metabolismo , Falência Renal Crônica/metabolismo , Falência Renal Crônica/patologia , Perfilação da Expressão Gênica
17.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1006268

RESUMO

ObjectiveTo observe the effects of the South African herb Hoodia gordonii (HG) on glucolipid metabolism in diabetic db/db mice and explore the possible mechanisms of HG on the liver of db/db mice based on the phosphoinositide-3 kinase (PI3K)/protein kinase B (Akt)/factor forkhead protein O1 (FoxO1) signaling pathway. MethodA total of 30 db/db mice were randomly divided into five groups according to fasting blood glucose: model group, metformin group (0.195 g·kg-1), and low dose (0.39 g·kg-1), medium dose (0.78 g·kg-1), and high dose (1.56 g·kg-1) HG groups, with six m/m mice in each group, and another six m/m mice were set as normal group. The mice in the normal and model groups were given saline of 9 mL·kg-1 by gavage. Body weight, water intake, and fasting blood glucose of the mice in each group were measured weekly. After six weeks of continuous administration, serum insulin (FINS), low-density lipoprotein cholesterol (LDL), total cholesterol (TC), triglyceride (TG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), urea, and creatinine (CREA) were measured, and liver sections were embedded and stained with hematoxylin-eosin (HE), periodic acid-Schiff (PAS), and oil red O. Protein expression of PI3K p85, p-Akt, and p-FoxO1 in liver was detected by immunohistochemistry. The mRNA expression of PI3K, Akt, and FoxO1 in liver tissue was detected by real-time polymerase chain reaction (Real-time PCR). ResultAfter six weeks of administration intervention, it was found that fasting blood glucose was significantly downregulated in mice in the three HG groups (P<0.05). The level of islet resistance index was significantly reduced in both the low and medium dose HG groups (P<0.05). The expression levels of TC, TG, and LDL were reduced in all HG groups (P<0.05, P<0.01). Pathologically, HG could alleviate hepatocyte steatosis, reduce the volume and content of lipid droplets in liver, and increase the distribution of glycogen granules in liver to some extent in mice. Immunohistochemical assays revealed that PI3K p85 protein expression was significantly increased in the low, medium, and high dose HG groups compared with the model group (P<0.01). p-Akt protein expression was significantly increased in the medium and high dose HG groups (P<0.05, P<0.01). p-FoxO1 protein expression was significantly increased in the low, medium, and high dose HG groups (P<0.05, P<0.01). Compared with the model group, PI3K mRNA was increased in low dose, medium dose, and high dose HG groups (P<0.05), and Akt mRNA was increased in high dose HG group (P<0.05). FoxO1 mRNA was decreased in low dose, medium dose, and high dose HG groups (P<0.05). ConclusionHG can ameliorate the disorder of glucolipid metabolism in db/db mice, which may be related to its activation of the hepatic PI3K/Akt/FoxO1 signaling pathway.

18.
J Inflamm Res ; 16: 4805-4819, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901382

RESUMO

Objective: Diabetes mellitus (DM) implicates oxidative stress, apoptosis, and inflammation, all of which may contribute liver injury. Aerobic exercise is assured to positively regulate metabolism in the liver. This project was designed to investigate whether and how aerobic exercise improves DM-induced liver injury. Methods: Seven-week-old male db/db mice and age-matched m/m mice were randomly divided into a rest control group or a group that received 12 weeks of aerobic exercise by treadmill training (10 m/min). Haematoxylin and eosin (HE) staining, electron microscopy, Oil Red O staining and TUNEL assays were used to evaluate the histopathological changes in mouse liver. The serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TRIG), cholesterol (CHOL) were analyzed by serum biochemical analysis. Interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), and tissue levels of malondialdehyde (MDA) and superoxide dismutase (SOD) were analyzed via ELISA. Nuclear factor E2-associated factor-2 (Nrf2), nuclear factor κB (NF-κB) and JAK2/STAT3 pathway-related proteins were measured by immunofluorescence, Western blotting and q-PCR. F4/80 expression in liver tissues was assessed by immunohistochemistry. Results: In diabetic mice, exercise training significantly decreased the levels of serum TRIG, CHOL, IL-6, TNF-α, ALT and AST; prevented weight gain, hyperglycaemia, and impaired glucose and insulin tolerance. Morphologically, exercise mitigated the diabetes-induced increase in liver tissue microvesicles, inflammatory cells, F4/80 (macrophage marker) levels, and TUNEL-positive cells. In addition, exercise reduced the apoptosis index, which is consistent with the results for caspase-3 and Bax. Additionally, exercise significantly increased SOD activity, decreased MDA levels, activated Nrf2 and decreased the expression of NF-kB, phosphorylated JAK2 and STAT3 proteins in the livers of diabetic mice. Conclusion: This study demonstrated that aerobic exercise reversed liver dysfunction in db/db mice with T2DM by reducing oxidative stress, apoptosis and inflammation, possibly by enhancing Nrf2 expression and inhibiting the JAK2/STAT3 cascade response.

19.
Artigo em Inglês | MEDLINE | ID: mdl-37843589

RESUMO

Exercise training (ET) has several health benefits; however, our understanding of regional adaptations to ET is limited. We examined the functional and molecular adaptations to short- and long-term ET in elastic and muscular conduit arteries of db/db mice in relation to changes in cardiovascular risk factors. Diabetic mice and their controls were exercised at moderate intensity for 4 or 8 weeks. The vasodilatory and contractile responses of thoracic aortae and femoral arteries isolated from the same animals were examined. Blood and aortic samples were used to measure hyperglycemia, oxidative stress, inflammation, dyslipidemia, protein expression of SOD isoforms, COX, eNOS, and Akt. Short-term ET improved nitric oxide (NO) mediated vasorelaxation in the aortae and femoral arteries of db/db mice in parallel with increased SOD2 and SOD3 expression, reduced oxidative stress and triglycerides, and independent of weight loss, glycemia, or inflammation. Long-term ET reduced body weight in parallel with reduced systemic inflammation and improved insulin sensitivity along with increased SOD1, Akt, and eNOS expression and improved NO vasorelaxation. Exercise did not restore NOS- and COX-independent vasodilatation in femoral arteries, nor did it mitigate the hypercontractility in the aortae of db/db mice; rather ET transiently increased contractility in association with upregulated COX-2. Long-term ET differentially affected the aortae and femoral arteries contractile responses. ET improved NO-mediated vasodilation in both arteries likely due to collective systemic effects. ET did not mitigate all diabetes-induced vasculopathies. Optimization of the ET regimen can help develop comprehensive management of type 2 diabetes.

20.
Aging (Albany NY) ; 15(19): 10681-10704, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37827693

RESUMO

Diabetic kidney disease (DKD) is a renal microvascular disease caused by hyperglycemia that involves metabolic remodeling, oxidative stress, inflammation, and other factors. The mechanism is complex and not fully unraveled. We performed an integrated single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) and single-cell RNA-sequencing (scRNA-seq) analyses of kidneys from db/db and db/m mice to identify differential open chromatin regions and gene expression, particularly in genes related to proximal tubular reabsorption and secretion. We identified 9,776 differentially expressed genes (DEGs) and 884 cell type-specific transcription factors (TFs) across 15 cell types. Glucose and lipid transporters, and TFs related to the circadian rhythm in the proximal tubules had significantly higher expression in db/db mice than in db/m mice (P<0.01). Crosstalk between podocytes and tubular cells in the proximal tubules was enhanced, and renal inflammation, oxidative stress, and fibrosis pathways were activated in db/db mice. Western blotting and immunohistochemical staining results showed that Wfdc2 expression in the urine and kidneys of DKD patients was higher than that in non-diabetic kidney disease (NDKD) controls. The revealed landscape of chromatin accessibility and transcriptional profiles in db/db mice provide insights into the pathological mechanism of DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Humanos , Camundongos , Animais , Nefropatias Diabéticas/metabolismo , Cromatina/genética , Cromatina/metabolismo , RNA/metabolismo , Rim/patologia , Biomarcadores/metabolismo , Inflamação/metabolismo , Diabetes Mellitus/metabolismo , Proteína 2 do Domínio Central WAP de Quatro Dissulfetos/genética , Proteína 2 do Domínio Central WAP de Quatro Dissulfetos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...